Report Type: Study Session

Meeting Date: 10/20/2014
Summary Title: Palo Alto Grade Separation and Trenching Study
Title: Palo Alto Grade Separation and Trenching Study

From: City Manager

Lead Department: Planning and Community Environment

Recommendation

This study session provides the City Council an opportunity to discuss findings in the attached report by Hatch Mott McDonald (HMM) and provide direction on next steps. No action is recommended at this time.

Executive Summary

HMM, a consulting firm specializing in construction engineering, was hired at the direction of the Palo Alto City Council to study conceptual grade separation alternatives for a portion of the Caltrain right of way encompassing three existing at-grade crossings (Charleston, Meadow, and Churchill). This study provides preliminary information on the potential impacts and cost of construction (by order of magnitude) for various roadway submersion and trenching alternatives.

This information is intended to facilitate community dialogue on the issue and ultimately to help form a policy position on grade separations. The study is not definitive in determining an ultimate configuration, but does provide a starting point for dialogue on the issue. Specifically, the study indicates that the roadway submersion alternatives would require significant property acquisitions, while the trenching alternatives would not. Also, the trenching alternatives would maintain turning movements along Alma Street, while not all of the roadway submersion alternatives would do so.

For example, the two percent (2%) grade trenching alternative would grade separate Charleston and Meadow for around $\$ 488$ million and require zero property acquisitions versus the alternative that submerges the roadway beneath the railroad tracks at Charleston and Meadow and maintains turning movements on and off of Alma which would cost approximately $\$ 320$ million and require acquisition of 32 full parcels and seven partial parcels.

Background

At the November 4, 2013 City Council meeting, HMM was authorized, at a cost of $\$ 59,790$, to move forward with Phase I of an analysis that delivered a conceptual cost estimate for a number of preliminary grade separation alternatives south of the California Avenue Caltrain Station. The most important information obtained from this analysis was intended to be a clearer understanding of the differences in cost and construction impacts between submerging the roadway and trenching the railroad at certain intersections in Palo Alto. The reason trenching was only studied south of Oregon Expressway is that because if it was determined that trenching was cost prohibitive south of Oregon Expressway it certainly would be north of Oregon Expressway where trenching the corridor would require the complete reconstruction of the City's three existing grade separated crossings (Oregon Expressway, Embarcadero, and University) and submerging the City's two Caltrain stations (California Avenue and Palo Alto), in addition to complications posed by San Francisquito Creek.

Phase I of the analysis, as presented in this report, evaluates the preliminary alternatives by evaluating construction feasibility, right of way impacts (i.e. property acquisitions), and concept level cost estimates for comparison purposes.

Phase II of the analysis would develop the City's selected preliminary alternatives to a final concept level, produce concept design exhibits, and provide refined order of magnitude project costs and assessments of feasibility. The cost of Phase II would be an additional $\$ 67,760$ and staff is interested in hearing from the Council whether this additional work is needed to provide sufficient information for community dialog and policy decisions regarding which of the preliminary alternatives, if any, should be pursued from a funding and logistical standpoint with outside agencies such as Caltrain, the Santa Clara Valley Transportation Authority, and the Metropolitan Transportation Commission.

Listed below are the specific grade separation alternatives evaluated by HMM. Alternatives that were studded by HMM are:

1. Trenching the corridor from approximately San Antonio to approximately Oregon Expressway, which would grade separate both Meadow and Charleston by keeping the existing roadways at-grade and running rail traffic beneath it in an open trench.

* Please note that this alternative does not impact whether or not the roadway is submerged below the railroad tracks at Churchill.

2. Submerging the roadway beneath the railroad tracks at Churchill
3. Submerging the roadway beneath the railroad tracks at Meadow
4. Submerging the roadway beneath the railroad tracks at Charleston

It should be noted, as the report from HMM indicates, that if Council chooses to pursue the roadway submersion alternatives at both Charleston and Meadow that maintain turning movements on and off of Alma they must be done as a single project due to their proximity; however, submerging the roadway at Churchill can occur regardless of what happens at the Meadow and Charleston intersections.

Attached for your review is HMM's Palo Alto Grade Separation Study (Attachment A), including an attachment that outlines the costs associated with each alternative. The primary difference between the trenching estimate that was generated by HMM in 2011 and the one generated in this study is that the previous estimate was based on California High Speed Rail Authority (CHSRA) cost of construction per foot figures and did not take local, existing conditions into consideration at the level of detail this study does.

The updated study uses current and local construction cost information. HMM generated their estimates in part by using information they've obtained from current transportation construction projects in the area with similar traits such as the Bay Area Rapid Transit (BART) to San Jose extension project. Furthermore, HMM used figures that are more applicable to the existing conditions at the intersections they studied as it relates to utility relocation costs, right of way impacts, staging, and traffic signal impacts rather than wholesale allowance numbers.

The use of recent and local construction data provides more realistic order of magnitude cost estimates for work on the Peninsula compared to the 2011 study.

Results of the Analysis

As displayed in the Alternative Cost Estimates attachment to the HMM report, the most expensive alternative is the one percent (1\%) grade trench alternative at a cost of approximately $\$ 1.05$ billion. This alternative would not require a design exemption as it relates to the slope of the grade but it's more than double the cost of the two percent (2\%) grade trench alternative mainly due to the impacts it would have on Oregon Expressway (already grade separated) and the San Antonio Avenue and California Avenue Caltrain stations based on its expanded footprint. Additionally, this alternative becomes significantly more complex than the two percent (2%) grade trench alternative when existing creeks are considered because instead of the trench being able to go above them the creeks would have to be rerouted, likely requiring additional infrastructure such as pump stations.

Although both the one percent (1\%) grade trench alternative and the two percent (2\%) grade trench alternative are more expensive than the roadway submersion alternatives they require zero parcel acquisitions, have fewer visual impacts by having a reduced footprint at each intersection, and result in a grade separated roadway that is level with the existing roadways, significantly benefiting bicycle and pedestrian movements.

Table 1 below summarizes the trench alternatives:

Table 1: Summary of Trench Alternatives

Trench Grade	One Percent (1\%)	Two Percent (2\%)
Cost	$\$ 1,050,728,700$	$\$ 488,187,283$
Full Property Acquisitions	0	0

Partial Property Acquisitions	0	0
Turn Movements Maintained	Yes	Yes

Source: Hatch Mott McDonald, 2014

As for the roadway submersion alternatives displayed in the Alternative Cost Estimates attachment to the HMM report, they are significantly less expensive than the trenching alternatives (ranging in price from approximately $\$ 85$ million to $\$ 184$ million per roadway submersion) but have far greater impacts in the form of property acquisitions, lost turning movements, and have far more visual impacts at each intersection due to their larger footprints.

Below are two tables that summarize the roadway submersion alternatives. Table 2 below shows the roadway submersion alternatives where Alma Street is left at-grade and therefore turning movements on and off of Alma Street are lost. Table 3 below shows the roadway submersion alternatives where Alma Street is lowered in order to maintain turning movements.

Table 2: Summary of Roadway Submersion Alternatives that Abolish Alma Street Turning Movements

Roadway Submersion Intersection	Churchill	Meadow	Charleston
Cost	$\$ 90,334,561$	$\$ 84,578,797$	$\$ 101,783,449$
Full Property Acquisitions	16	11	18
Partial Property Acquisitions	4	5	3
Turn Movements Maintained	No	No	No

Source: Hatch Mott McDonald, 2014

Table 3: Summary of Roadway Submersion Alternatives that Lower Alma Street to Maintain Turning Movements

Roadway Submersion Intersection	Churchill	Meadow	Charleston
Cost	$\$ 183,513,669$	$\$ 143,385,047$	$\$ 152,903,454$
Full Property Acquisitions	33	14	18
Partial Property Acquisitions	3	4	3
Turn Movements Maintained	Yes	Yes	Yes

Source: Hatch Mott McDonald, 2014
As previously noted, if the roadway submersion alternatives that maintain turning movements on and off of Alma Street at the Meadow and Charleston intersections are selected they must be constructed congruently, as a single project, and that will cost an additional $\$ 23,177,765$ for a total project cost of $\$ 319,466,266(\$ 143,385,047+\$ 152,903,454+\$ 23,177,765)$.

Next Steps

Based on Council comments, staff will come back to Council in the near future with a staff
recommendation for Council review and approval on a preferred alternative to pursue. By identifying a preferred alternative staff will be more effective in both discussing the issue with transportation and funding agencies in addition to facilitating our public outreach efforts.

The property acquisitions associated with some of the alternatives presented in the HMM report are significant and therefore staff feels strongly that any decision that is made on this topic should not be rushed. Therefore, staff felt that first discussing the HMM report in a study session before bringing it before Council for action was most appropriate.

Finally, as noted above, staff is interested in learning whether Council believes further study, such as Phase II of the HMM scope of work, should be done or if at this time the information HMM has already provided is sufficient.

Attachments:

- Palo Alto Grade Separation Study 10-7-2014
(PDF)

To Richard Hackmann, City of Palo Alto
From Michael Canepa, PE, HMM
Date 10/7/14
Project \# 324006
Page 1 of 7
CC Chris Metzger, Brian Hughes, Derek
Penrice
Subject Palo Alto Grade Separation Study

This memo discusses alternatives for grade separating the Caltrain tracks at existing at-grade crossings in the City of Palo Alto. The two alternatives evaluated in this study were: construction of an undercrossing at Churchill Ave, Meadow Dr, and Charleston Rd, and the construction of a rail trench under Meadow Dr and Charleston Rd. The following information was evaluated in support of the findings of this study:

- Typical cross sections for each alternative
- Plan/profile for each alternative
- ROW impacts
- Traffic impacts
- Utility impacts
- Cost estimate

Undercrossing at Churchill Ave, Meadow Dr, and Charleston Rd

The first alternative is to build an undercrossing at Churchill Ave, Meadow Dr, and Charleston Rd to separate the existing Caltrain tracks from the roadways. Due to the proximity of Alma St to the rail corridor, two scenarios were evaluated - keeping Alma St at existing grade and lowering Alma St to match the elevation of the undercrossing.

Design Criteria and Assumptions

- Design speed is assumed to be 5 mph above the posted speed limit or a minimum of 30 mph
- Maximum roadway grade used is 8%
- Maximum sidewalk grade is 5% (per ADA)
- Roadway vertical clearance is 15.5^{\prime} (per JPB Standards for Design and Maintenance of Structures 2.4.2)
- Sidewalk vertical clearance is 10^{\prime} (per HDM 208.6)
- Minimum vertical curve length is 200^{\prime} (per HDM 204.4)
- 1:10 depth to span ratio for rail bridges
- Roadway bridge depths:

To Richard Hackmann, City of Palo Alto
Date 10/7/14
Page 2 of 7

- Reinforced concrete bridge (continuous span over Caltrain trench) - AASHTO Bridge Design Table 2.5.2.6.3-1
- Prestressed girder bridge (simple span over roadway undercrossing) - based on manufacturer's recommend depth for prestressed girders

Typical Roadway \& Bridge Sections

- Churchill Ave undercrossing width is 60^{\prime} when Alma St remains at existing grade
- $2 \times 12^{\prime}$ thru lanes
- $2 \times 2^{\prime}$ buffer
- $2 \times 6^{\prime}$ bike lane
- $2 \times 2^{\prime}$ barrier
- $2 \times 8^{\prime}$ sidewalk
- Churchill Ave undercrossing width is 70^{\prime} when Alma St is lowered
- $2 \times 12^{\prime}$ thru lanes
- 12^{\prime} right turn lane
- 2^{\prime} buffer
- $2 \times 6^{\prime}$ bike lane
- $2 \times 2^{\prime}$ barrier
- $2 \times 8^{\prime}$ sidewalk
- Meadow Dr undercrossing width is 80^{\prime} when Alma St is at existing grade or lowered
- $4 \times 11^{\prime}$ thru lanes
- $2 \times 2^{\prime}$ buffer
- $2 \times 6^{\prime}$ bike lane
- 2×2 ' barrier
- $2 \times 8^{\prime}$ sidewalk
- Charleston Rd undercrossing width is 80^{\prime} when Alma St is at existing grade or lowered
- $4 \times 11^{\prime}$ thru lanes
- $2 \times 2^{\prime}$ buffer
- $2 \times 6^{\prime}$ bike lane
- $2 \times 2^{\prime}$ barrier
- $2 \times 8^{\prime}$ sidewalk
- Rail bridge width at undercrossing is 40^{\prime}
- $\quad 15$ ' track center (per Caltrain Design Criteria 3.1)

To Richard Hackmann, City of Palo Alto
Date 10/7/14
Page 3 of 7

- $2 \times 9.5^{\prime}$ from centerline of track to OCS pole (per Caltrain Standard Drawing ETF-0001-0010)
- $2 \times 1.5^{\prime}$ OCS pole (per Caltrain Standard Drawing ETF-0001-0010)
- $2 \times 1.5^{\prime}$ from OCS pole to edge of bridge deck

Two scenarios were evaluated at each undercrossing. In the first scenario, Alma St would remain at existing grade and each undercrossing would pass below both the Caltrain tracks and Alma St. This would disconnect Alma St from the crossing streets and would require traffic to be routed to the next crossing to the north or south. In the second scenario, to maintain connectivity between the streets, Alma St. would be lowered to match the elevation of the crossing street.

At each crossing, several streets will be closed to avoid property impacts at the intersections with the undercrossing. Closures at these intersections will force traffic to adjacent intersections which may require signalization to compensate for the increase in traffic.

In the first scenario, with Alma St at existing grade, the following impacts will occur:

- ROW impacts along Churchill from Castilleja Ave to Emerson St with intersection closures at Mariposa Ave and the eastern side of Castilleja Ave
- ROW impacts along Meadow Dr from $2^{\text {nd }}$ St to Emerson St with intersection closures at Park Blvd and $2^{\text {nd }} \mathrm{St}$
- ROW impacts along Charleston Rd from Ruthelma Ave to Wright PI with intersection closure at Park Blvd
- Traffic impacts at Madrono Ave/Churchill Ave intersection
- Traffic impacts at Wilkie Way/Meadow Dr intersection
- Traffic impacts at Ruthelma Ave/Charleston Rd intersection and Wilkie Way/Charleston Rd intersection

For this scenario, there will be 16 full parcel takes and 4 partial takes for Churchill Ave undercrossing, 11 full parcel takes and 5 partial takes for Meadow Dr undercrossing, and 17 full parcel takes and 3 partial takes for Charleston Rd undercrossing.

In the second scenario, with Alma St lowered to the new elevation of the undercrossing, the following impacts will occur in addition to those listed above:

To Richard Hackmann, City of Palo Alto
Date
10/7/14
Page 4 of 7

- ROW impacts along Alma St from Melville Ave to Lowell Ave with intersection closures at Kellogg Ave and Coleridge Ave
- ROW impacts along Alma St from Alma Village Cir to Meadow Dr
- Intersection closure at Lindero Dr if undercrossings are constructed at both Meadow Dr and Charleston Rd
- Traffic impacts at Melville Ave/Alma St intersection and Lowell Ave/Alma St intersection

The total number of parcel takes required for this scenario in addition to those listed above is 17 additional full parcel takes and 1 less partial take for Churchill Ave undercrossing, 14 additional full parcel takes and 1 less partial take for Meadow Dr undercrossing, and no change in parcel takes for Charleston Rd undercrossing.

This study also evaluated the potential of combining roadway undercrossings with a slight elevation of the rail tracks to minimize the extent of the ROW/traffic impacts along the crossing streets. For every 3^{\prime} the tracks are raised, the length of the impacted area along the cross street decreases by 40'-50' at each end.

In the first scenario, with Alma St at existing grade, the following benefits will occur when the tracks are raised 3 feet:

- 3 parcel impacts will no longer be required at Churchill Ave
- Castilleja Ave closure will no longer be required at Churchill Ave
- 2 parcel impacts will no longer be required at Meadow Dr
- $2^{\text {nd }}$ St closure will no longer be required at Meadow Dr
- 3 parcel impacts will no longer be required at Charleston Rd

In the second scenario, with Alma St lowered to the new elevation of the undercrossing, the following benefits will occur in addition to those listed above when the tracks are raised 3 feet:

- 2 additional parcel impacts will no longer be required at Churchill Ave
- Alma Village Cir closure will no longer be required at Meadow Dr

To Richard Hackmann, City of Palo Alto
Date 10/7/14
Page 5 of 7

Rail Trench Under Meadow Dr and Charleston Rd

The second alternative is to build a trench under Meadow Dr and Charleston Rd to separate the existing Caltrain tracks from the roadways. Due to the constraints of Matadero Creek, Barron Creek, and Adobe Creek crossing the corridor, two scenarios were studied to avoid impacts to the creeks - maximum grade of 1% (preferred maximum) and maximum grade of 2% (design exception required).

Design Criteria and Assumptions

- Design speed is assumed to be 90 mph (per Caltrain Design Criteria 1.0)
- Preferred maximum grade is 1%; maximum grade with design exception is 2% (per Caltrain Design Criteria 7.1)
- Minimum rail vertical clearance is 24.5^{\prime} (per Caltrain Standard Drawing SD-2002)
- Minimum distance from TOR to creek invert at creek crossing is 32.5^{\prime} (24.5^{\prime} rail vertical clearance $+3^{\prime}$ trench lid $+5^{\prime}$ cover)

Typical Roadway \& Trench Sections

- Trench width is 47^{\prime}
- $\quad 15^{\prime}$ track center (per Caltrain Design Criteria 3.1)
- $2 \times 10^{\prime}$ from track centerline to trench wall (per Caltrain Standards for Design and Maintenance of Structures 2.4.3)
- $2 \times 3^{\prime}$ trench wall
- $2 \times 3^{\prime}$ excavation support wall
- Churchill Ave bridge width is 66^{\prime}
- $2 \times 12^{\prime}$ thru lanes
- 12^{\prime} right turn lane
- 2' buffer
- $2 \times 6^{\prime}$ bike lane
- $2 \times 8^{\prime}$ sidewalk
- Meadow Dr bridge width is 76^{\prime}
- $4 \times 11^{\prime}$ thru lanes
- $2 \times 2^{\prime}$ buffer
- $2 \times 6^{\prime}$ bike lane

To Richard Hackmann, City of Palo Alto
Date 10/7/14
Page 6 of 7
$\circ \quad 2 \times 8^{\prime}$ sidewalk

- Charleston Rd bridge width is 76^{\prime}
$0 \quad 4 \times 11^{\prime}$ thru lanes
$0 \quad 2 \times 2^{\prime}$ buffer
$0 \quad 2 \times 6^{\prime}$ bike lane
$0 \quad 2 \times 8^{\prime}$ sidewalk

Two scenarios were studied for the rail trench alternative. In the first scenario, a maximum grade of 2% is used to minimize the length of the trench while avoiding impacts to the creeks. Using this alternative, the trench will begin just south of the Matadero Creek. It will pass under Baron Creek, Meadow Dr, Charleston Rd, and Adobe Creek, and will return to grade just north of San Antonio Rd. The depth and grade of the trench is controlled by the 32.5' clearance required under the two creeks (Baron Creek and Adobe Creek) and the constraints at either end (Matadero Creek and San Antonio Rd). Both the 1.75% grade into the trench and the 2.00% grade coming out of the trench will require design exceptions.

In the second scenario, a maximum grade of 1% is used, which will also avoid impacts to creeks but will require approximately 10,500 ' additional feet of trench and will require the reconstruction of Oregon Expressway and San Antonio Rd. The trench will begin just south of Churchill Ave. It will pass under Oregon Expressway, which will need to be reconstructed to remove the existing undercrossing and return the roadway to surrounding grade level. The trench will continue under Matadero Creek, Baron Creek, Meadow Dr, Charleston Rd, and Adobe Creek, with the depth of the trench being controlled by the 32.5^{\prime} clearance require under Matadero Creek and Adobe Creek. As the trench returns to grade at Rengstorff Ave, it will pass under San Antonio Rd, which will need to be raised several feet to accommodate 24.5^{\prime} of clearance over the rail. This alternative will not require any design exceptions.

This study also evaluated the potential relocation of the three existing creeks to mitigate design exceptions and minimize trench length. However, relocation of any of the creeks would require resizing of the culverts to accommodate slower flow through a flatter channel. In addition, at Adobe Creek and Matadero Creek, the 100 year flood water surface elevation is at the top of the culvert, and at Baron Creek there is only 1.8^{\prime} of freeboard. Any modifications would require upsizing all the culverts to provide 3^{\prime} of freeboard. While maintaining a minimum slope of 0.25%, the creek crossing could be relocated several hundred feet north or south, however, this would not provide enough space to avoid a maximum grade design exception for the 2% grade scenario and would only provide a few hundred feet of savings in trench length for the 1% grade scenario.

To Richard Hackmann, City of Palo Alto
Date 10/7/14
Page 7 of 7

There will be no permanent ROW impacts with this alternative, as the trench will be built within the existing JPB ROW. Traffic impacts will be temporary, and will be related to construction of the roadway bridges.

Cost Estimate

A preliminary cost estimate for each alternative for comparative purposes is provided as Attachment A to this memo. The major civil components used to produce the preliminary cost estimates include earthwork, trench and bridge structures, pump stations, railroad shooflies, traffic detours, railroad and roadway signaling, utility relocations, and right-of-way costs. Soft costs for professional services and contingency costs have been included as percentages of estimated construction and project costs.

Attachments

Attachment A - Alternative Cost Estimates

		$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		\circ N N			$\stackrel{m}{2}$	$\begin{aligned} & \text { Ñ } \\ & \underset{\sim}{n} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { o} \\ & 0 \\ & \text { do } \\ & \text { on } \\ & \text { m } \end{aligned}$
	0								

Palo Alto Caltrain－Grade Separation Projects
Attachment A－Alternative Cost Estimates
Palo Alto Caltrain－Grade Separation Projects
Attachment A－Alternative Cost Estimates

戠					产	\％							
商		¢	\％	年	\％	\％							

颜				颜		宮						亳
管		\％	風边	商	$\stackrel{\text { \％}}{\text { ¢ }}$	呈						

訇	－			部管	颜	\％	呇	年婱等			溇		\％		
\％		雷		\％		\％	鬯	\％							

				\％		\％	遃				\％						最
会		$\stackrel{\text { a }}{\text { a }}$	${ }^{\frac{2}{2}}$	\％		星	星										

				（\％	這	\％								吕
					暏	\％								
\|				號	婯	咅								\％
敦		產実		\％	会	\％								

$\frac{\hat{2}}{\frac{2}{2}}$				\％	\％ัญ		諒	號	출ํํ				
㘊					\％		\％	\％					

	2			\|	言		岡冏	象						素
		运运	จ่ำ	部	\％	\％	$\stackrel{\text { \％}}{\text { ¢ }}$	$\stackrel{\text { \％}}{\text { ¢ }}$						

Palo Alto Caltrain－Grade Separation Projects

							椄	－						骨				휴류률		
								\％		$8{ }^{2} 8{ }^{2}$				\％				\％\％\％		

Attachment A－Alternative Cost Estimates

					$\stackrel{\circ}{2}$					，		¢		\％	
					\％			융		$\stackrel{\square}{\square}$		\bigcirc		역	

等录

，				，	为		边			\％	\％				崴迢		＇	\％	\％							旁
8							2			\％	榢	\％			\％\％			®	\％							

婁		\％	）				安号	星	滣																		안
\bigcirc		\％${ }^{\text {\％}}$	\％	¢ $\square^{\text {a }}$		\％		\％	${ }^{\circ}$																		

Utility Relocation and Protection

Palo－Alto＿Quantities－Rev 1．xlsx－page 3 of 4

	$\stackrel{\text { 픙 }}{0}$	8 8 8 8	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & 0 . \\ & 0 . \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 . \\ & 0 . \\ & 8 . \\ & \text { O} \\ & \text { in } \end{aligned}$
	0	m	$\stackrel{\sim}{\infty}$	

	프으응		$\begin{aligned} & 8 \\ & 8 \\ & 0 . \\ & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 . \\ & 0 . \\ & \text { B. } \\ & \text { in } \end{aligned}$
	E	m	$\stackrel{\sim}{\sim}$	

Palo Alto Caltrain - Grade Separation Projects
Attachment A - Alternative Cost Estimates

